Algebraic shifting of cyclic polytopes and stacked polytopes

نویسنده

  • Satoshi Murai
چکیده

Gil Kalai introduced the shifting-theoretic upper bound relation to characterize the f -vectors of Gorenstein* complexes (or homology spheres) by using algebraic shifting. In the present paper, we study the shifting-theoretic upper bound relation. First, we will study the relation between exterior algebraic shifting and combinatorial shifting. Second, by using the relation above, we will prove that the boundary complex of cyclic polytopes satisfies the shifting theoretic upper bound relation. We also prove that the boundary complex of stacked polytopes satisfies the shifting-theoretic upper bound relation. Résumé. Gil Kalai a défini une relation ”shifting-theoretic upper bound” pour caractériser les f -vecteurs des complexes de Gorenstein (sphères d’homologie) en termes de décalages algébriques. Dans cet article, nous étudions cette relation. Premièrement, nous étudions la relation entre le décalage algébrique exterieur et le décalage combinatoire. Ensuite, en utilisant cette relation, nous démontrons que le complexe des frontières des polytopes cycliques satisfait la relation ”shifting-theoretic upper bound”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Programming, the Simplex Algorithm and Simple Polytopes

In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes. 

متن کامل

On Gale and braxial polytopes

Cyclic polytopes are characterized as simplicial polytopes satisfying Gale’s evenness condition (a combinatorial condition on facets relative to a fixed ordering of the vertices). Periodically-cyclic polytopes are polytopes for which certain subpolytopes are cyclic. Bisztriczky discovered a class of periodically-cyclic polytopes that also satisfy Gale’s evenness condition. The faces of these po...

متن کامل

Hypercube Related Polytopes

Body centered structures are used as seeds for a variety of structures of rank 3 and higher. Propellane based structures are introduced and their design and topological properties are detailed.

متن کامل

On the Complexity of Polytopes in LI(2)

In this paper we consider polytopes given by systems of n inequalities in d variables, where every inequality has at most two variables with nonzero coefficient. We denote this family by LI(2). We show that despite of the easy algebraic structure, polytopes in LI(2) can have high complexity. We construct a polytope in LI(2), whose number of vertices is almost the number of vertices of the dual ...

متن کامل

On r-stacked triangulated manifolds

The notion of r-stackedness for simplicial polytopes was introduced by McMullen and Walkup in 1971 as a generalization of stacked polytopes. In this paper, we define the r-stackedness for triangulated homology manifolds and study their basic properties. In addition, we find a new necessary condition for face vectors of triangulated manifolds when all the vertex links are polytopal. Résumé. Géné...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 307  شماره 

صفحات  -

تاریخ انتشار 2007